和差角與倍半角公式

 和角與差角公式

正弦:

  • $\sin ( A + B ) = \sin A \cos B + \sin B \cos A$
  • $\sin ( A - B ) = \sin A \cos B - \sin B \cos A$

餘弦:

  • $\cos ( A + B ) = \cos A \cos B - \sin A \sin B$
  • $\cos ( A - B ) = \cos A \cos B + \sin A \sin B$

正切:

  • $\tan ( A + B ) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$
  • $\tan ( A - B ) = \dfrac{\tan A - \tan B}{1 + \tan A \tan B}$

二倍角公式

  • $\sin 2 \theta = 2 \sin \theta \cos \theta$
  • $\\cos 2 \theta = \cos^2 \theta - \sin^2 \theta = 1 - 2 \sin^2 \theta = 2 \cos^2 \theta - 1$

半角公式

  • $\sin^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{2}$
  • $\sin \dfrac{\theta}{2} = \pm\sqrt{\dfrac{1 - \cos \theta}{2}}$
  • $\cos^2 \dfrac{\theta}{2} = \dfrac{1 + \cos \theta}{2}$
  • $\cos \dfrac{\theta}{2} = \pm\sqrt{\dfrac{1 + \cos \theta}{2}}$
  • $\tan \dfrac{\theta}{2} = \dfrac{\sin \theta}{1 + \cos \theta} = \dfrac{1 - \cos \theta}{\sin \theta} = \pm\sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}$

三倍角公式

  • $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta$
  • $\sin 3 \theta = - 4 \sin^3 \theta + 3 \sin \theta$

0 留言

Cool Blue Outer Glow Pointer