和角與差角公式
正弦:
- $\sin ( A + B ) = \sin A \cos B + \sin B \cos A$
- $\sin ( A - B ) = \sin A \cos B - \sin B \cos A$
餘弦:
- $\cos ( A + B ) = \cos A \cos B - \sin A \sin B$
- $\cos ( A - B ) = \cos A \cos B + \sin A \sin B$
正切:
- $\tan ( A + B ) = \dfrac{\tan A + \tan B}{1 - \tan A \tan B}$
- $\tan ( A - B ) = \dfrac{\tan A - \tan B}{1 + \tan A \tan B}$
二倍角公式
- $\sin 2 \theta = 2 \sin \theta \cos \theta$
- $\\cos 2 \theta = \cos^2 \theta - \sin^2 \theta = 1 - 2 \sin^2 \theta = 2 \cos^2 \theta - 1$
半角公式
- $\sin^2 \dfrac{\theta}{2} = \dfrac{1 - \cos \theta}{2}$
- $\sin \dfrac{\theta}{2} = \pm\sqrt{\dfrac{1 - \cos \theta}{2}}$
- $\cos^2 \dfrac{\theta}{2} = \dfrac{1 + \cos \theta}{2}$
- $\cos \dfrac{\theta}{2} = \pm\sqrt{\dfrac{1 + \cos \theta}{2}}$
- $\tan \dfrac{\theta}{2} = \dfrac{\sin \theta}{1 + \cos \theta} = \dfrac{1 - \cos \theta}{\sin \theta} = \pm\sqrt{\dfrac{1 - \cos \theta}{1 + \cos \theta}}$
三倍角公式
- $\cos 3 \theta = 4 \cos^3 \theta - 3 \cos \theta$
- $\sin 3 \theta = - 4 \sin^3 \theta + 3 \sin \theta$
0 留言