特別角:
0° | 15° | 30° | 45° | 60° | 75° | 90° | |
---|---|---|---|---|---|---|---|
$\sin$ | 0 | $\dfrac{\sqrt{6}-\sqrt{2}}{4}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{2}}{2}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{\sqrt{6}+\sqrt{2}}{4}$ | 1 |
$\cos$ | 1 | $\dfrac{\sqrt{6}+\sqrt{2}}{4}$ | $\dfrac{\sqrt{3}}{2}$ | $\dfrac{\sqrt{2}}{2}$ | $\dfrac{1}{2}$ | $\dfrac{\sqrt{6}-\sqrt{2}}{4}$ | 0 |
$\tan$ | 0 | $2-\sqrt{3}$ | $\dfrac{1}{\sqrt{3}}$ | $1$ | $\sqrt{3}$ | $2+\sqrt{3}$ | no |
平方關係:
- $\sin^2\theta+\cos^2\theta=1$
- $(\sin\theta\pm\cos\theta)^2=1\pm2\sin\theta\cos\theta$
正弦定理:ASA或AAS
- $\dfrac{a}{\sin A}=\dfrac{b}{\sin B}=\dfrac{c}{\sin C}=2R=\dfrac{abc}{2\triangle}$
- $\sin A : \sin B : \sin C=a : b : c$
投影定理:
- $a=b\cos C + c\cos B$
- $b=c\cos A + a\cos C$
- $c=b\cos B + b\cos A$
餘弦定理:SSS或SAS
- $\cos A=\dfrac{b^2+c^2-a^2}{2bc}$,$a^2=b^2+c^2-2bc\cos A$
- $\cos B=\dfrac{a^2+c^2-b^2}{2ac}$,$b^2=a^2+c^2-2ac\cos B$
- $\cos C=\dfrac{a^2+b^2-c^2}{2ab}$,$c^2=a^2+b^2-2ab\cos C$
海龍公式:
- $s=\dfrac{a+b+c}{2}$
- $\triangle=\sqrt{s(s-a)(s-b)(s-c)}=rs=\dfrac{abc}{4R}$
中線定理:
- $\overline{AB}^2+\overline{AC}^2=2(\overline{AM}^2+\overline{MB}^2)$
平行四邊形定理:
- $\overline{AB}^2+\overline{BC}^2+\overline{CD}^2+\overline{DA}^2=\overline{AC}^2+\overline{BD}^2$
0 留言